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The following lemma is a useful presentation for H1(J r[Σ]) when Σ is complete. This is the
analogue of [5, Lemma 3.8] for complete fans.

Lemma 0.1 ([1, Lemma 9.12]). Let Σ ⊂ R3 be a hereditary, complete fan. Define Kr ⊂
⊕

τ∈Σ2

R(−r(τ)−

1) by

Kr = {
∑
τ∋γ

fτeτ |γ ∈ Σ1,
∑

fτα
r(τ)+1
τ = 0}.

Also define V r ⊂
⊕

τ∈Σ2

R(−r(τ)− 1) by

V r = {
∑
τ∈Σ2

fτeτ |
∑

fτα
r(τ)+1
τ = 0}.

Then Kr ⊂ V r and H1(J r[Σ]) ∼= V r/Kr as R-modules.

Proof. The proof is similar to the proof of [5, Lemma 3.8]. Let Kr
γ ⊂

⊕
γ∈τ R(−r(τ))eτ be the

module of relations around the ray γ ∈ Σ1, namely

Kr
γ = {

∑
τ∋γ

fτeτ |
∑

fτα
r(τ)
τ = 0}.

Furthermore, let J(0) be the ideal of the central vertex of Σ. Set up the following diagram with
exact rows, whose first row is the complex J [Σ].

0 0 0

⊕
τ∈Σ2

Jr(τ)
⊕

γ∈Σ1

Jr(γ) Jr(0)

⊕
τ∈Σ2

R(−r(τ))
⊕

γ∈Σ1,τ∈Σ2
γ∈τ

R(−r(τ))
⊕

τ∈Σ2

R(−r(τ))

0
⊕

γ∈Σ1

Kr
γ V r

0 0

ι
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The middle row is in fact exact because the inclusion on the left hand side has the effect of gluing
together copies of R(−r(τ)) that correspond to different rays in Σ1, leaving a copy of R(−r(τ)) for
every codimension one face τ ∈ Σ2 in the cokernel. Now the long exact sequence in homology yields
the isomorphisms H2(J r[Σ]) ∼= ker(ι) and H1(J r[Σ]) ∼= coker(ι). The image of

⊕
γ∈Σ1

Kr
γ under ι is

precisely Kr, so we are done. □

Now suppose A =
⋃k

i=1Hi ⊂ R3 is a hyperplane arrangement with associated complete fan
ΣA. Let r : ΣA

2 → Z≥−1 be a smoothness distribution that is constant on hyperplanes (that is, if
τ, τ ′ ⊂ H ∈ A, then r(τ) = r(τ ′)). In this case, we also regard r as a map from A → Z≥−1. Let

Mr =
[
α
r(H1)
1 · · ·αr(Hk)

k

]
be the matrix whose entries are the linear forms defining the hyperplanes

of A, raised to the power stipulated by r. Let

syz(Mr) :=

{
k∑

i=1

fiei :
k∑

i=1

fiα
r(Hi)
i = 0

}
⊂

k⊕
i=1

R(−r(Hi))

be the syzygy module of the matrix Mr.
For a given line W appearing as the intersection of at least two hyperplanes of A, we write Mr

W

for the matrix with a single row whose entries are {αr(H)
H : W ⊂ H}. We similarly have

syz(Mr
W ) :=

{ ∑
H⊃W

fHeH :
∑
H⊃W

fHα
r(H)
H = 0

}
⊂

⊕
H⊃W

R(−r(H)− 1).

There is a natural inclusion from syz(Mr
W ) into syz(Mr) by extending the syzygy on Mr

W by zero
to the rest of the entries of syz(Mr).

Corollary 0.2. If A =
⋃k

i=1Hi ⊂ R3 is a hyperplane arrangement with associated complete fan
ΣA, and r : ΣA

2 → Z≥0 is a smoothness distribution, then

H1(J [ΣA]) ∼=
syz(Mr)∑

W∈L2(A) syz(M
r
W )

,

where L2(A) is the collection of lines appearing as intersections of hyperplanes of A.

1. Three-generated hyperplane arrangements

The case r ≡ 0 of Corollary 0.2 deserves special attention.

Corollary 1.1. If A =
⋃k

i=1Hi ⊂ R3 is a central and essential hyperplane arrangement with
associated complete fan ΣA and r ≡ 0, then H1(J [ΣA]) is isomorphic to the R-vector space of R-
linear relations among the linear forms α1, . . . , αk modulo the R-linear relations among α1, . . . , αk

of length three.

Proof. In this case, r(τ) = 1 for all τ ∈ ΣA
2 , so Mr =

[
α1 · · ·αk

]
. Suppose α1, α2, α3 are a basis for

the R-span of the entries of Mr (this is three dimensional since A is essential).
Then syz(Mr) is generated by the Koszul syzygies on {α1, α2, α3} along with all the R-linear

relations on the entries of Mr.
If γ̄ ∈ L2(A), then we can select two linear forms, without loss suppose these are α1 and α2, that

intersect in the line γ̄. The syzygy module syz(Mr
γ̄ ) is generated by the Koszul syzygy between α1

and α2, along with the R-linear relations on {αH}γ∈H . Since these linear forms effectively live in
the two-dimensional vector space spanned by α1 and α2, the relations among them all have length
three.
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From the above descriptions, we see that the Koszul syzygies in syz(Mr) appear also in
∑

γ̄∈L2(A)

syz(Mr
γ̄ ).

Thus the presentation in Corollary 0.2 implies that

H1(J [ΣA]) ∼=
syz0(M

r)∑
γ̄∈L2(A) syz0(M

r
γ̄ )

,

where syz0 represents ‘syzygies of degree zero’ – that is, R-linear relations.
Furthermore, any relation of length three among {α1, . . . , αk}, without loss suppose c1α1+c2α2+

c3α3 = 0, necessarily expresses the fact that α1, α2, and α3 all vanish along a common line γ̄ ∈ L2(A).
Thus this relation appears in syz(Mr

γ̄ ). It follows that we may recast the above presentation as the
space of all R-linear relations on α1, . . . , αk modulo the space of R-linear relations of length three. □

Definition 1.2. If A =
⋃k

i=1Hi is a hyperplane arrangement with Hi the vanishing locus of αi for
i = 1, . . . , k, then A is called 3-generated if the space of all R-linear relations among α1, . . . , αk is
generated by the relations of length 3.

Lemma 1.3. If A =
⋃k

i=1Hi ⊂ R3 is a hyperplane arrangement with associated complete fan ΣA,
and r : ΣA

2 → Z≥0 is a smoothness distribution, then H1(J [ΣA]) has finite length. Furthermore
Sr(ΣA) is free if and only if H1(J [ΣA]) = 0.

Sketch of proof. Show that the localization of the presentation in Corollary 0.2 at all homogeneous
prime ideals besides the maximal ideal vanishes. The latter fact (concerning freeness) follows from
a seminal result of Schenck [3], generalized in [4, Theorem 3.4]. In the three-dimensional case, this
can be argued fairly quickly using Ext. □

Corollary 1.4. S0(ΣA) is free if and only if A is 3-generated.

The subtlety of this can be seen in action with an example that is sometimes called Ziegler’s pair.
There will be a Macaulay demo walking through this example.

2. Unwinding the dimension of splines on complete three-dimensional fans

We regard r and Σ as understood in this section, and so we write J instead of J r[Σ]. If Σ is a
complete three-dimensional fan, Lemma 0.1 can be used to give an interesting dimension formula
for Sr(Σ). Using the Euler characteristic of J and the fact that H0(J ) = 0 we get

dimH2(J )d − dimH1(J )d =
∑
τ∈Σ2

dim J(τ)d −
∑
γ∈Σ1

J(γ)d + dim J(0)d

Now recall that Sr(Σ) ∼= R⊕H2(J ). This gives

dimSr(Σ)d = dimRd +
∑
τ∈Σ2

dim J(τ)d −
∑
γ∈Σ1

dim J(γ)d + dim J(0)d + dimH1(J )d. (2.1)

Since R = R[x, y, z], dimRd =
(
d+2
2

)
. Since J(τ) = ⟨αr(τ)+1

τ ⟩, dimJ(τ)d =
(
d+2−(r(τ)+1)

2

)
=(

d+1−r(τ)
2

)
. The dimension of J(γ)d is computed by Schenck and Geramita in [2]. Their result

is the following. J(γ) = ⟨αr(τ)+1
τ : τ ∋ γ⟩ is a codimension two Cohen-Macaulay ideal, and

thus it has a Hilbert-Burch resolution. Suppose that there are nγ + 1 codimension one cones
containing γ and that τ0, . . . , τnγ ∈ Σ2 are these codimension one cones. Then J(γ) is generated

in degrees e0 = r(τ0) + 1, · · · , enγ = r(τnγ ) + 1. Put Eγ =
∑nγ

i=0 ei. The key technical result of
[2], which is Theorem 2.7 of that paper, is that syzJ(γ) is generated in degrees d1, . . . , dnγ where
d1 ≤ d2 ≤ · · · ≤ dnγ are each as close as possible to Eγ/nγ . To state this exactly, let Eγ = qγnγ +rγ
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be the result of dividing Eγ by nγ using the Euclidean algorithm. Then d1 = d2 = . . . = dnγ−rγ = qγ
and dnγ−rγ+1 = · · · = dnγ = qγ + 1. Thus

dim J(γ)d =
∑
τ∋γ

(
d+ 1− r(τ)

2

)
− (nγ − rγ)

(
d+ 2− qγ

2

)
− rγ

(
d+ 1− qγ

2

)
.

In Equation (2.1), this leaves the term dim J(0)d + dimH1(J )d unsimplified. We simplify it as
follows. Consider the (generally non-minimal) exact sequence

0 → syz[αr(τ)+1
τ : τ ∈ Σ2] →

⊕
τ∈Σ2

R(−r(τ)− 1)
[α

r(τ)+1
τ :τ∈Σ2]−−−−−−−−−→ J(0) → 0.

In the notation of Lemma 0.1, syz[α
r(τ)+1
τ : τ ∈ Σ2] = V r. Thus we have dim J(0) =

∑
τ∈Σ2

(
d+1−r(τ)

2

)
−

dimV r
d . By Lemma 0.1, we have dimH1(J )d = dimV r

d − dimKr
d . Thus

dim J(0)d + dimH1(J )d =(
∑
τ∈Σ2

(
d+ 1− r(τ)

2

)
− dimV r

d ) + (dimV r
d − dimKr

d)

=
∑
τ∈Σ2

(
d+ 1− r(τ)

2

)
− dimKr

d .

Using these expressions to simplify (2.1) and using the fact that
∑

τ∈Σ2

∑
τ∋γ

(
d+1−r(τ)

2

)
= 2

∑
τ∈Σ2

(
d+1−r(τ)

2

)
(each codimension one cone τ contains two rays) we get the following.

Theorem 2.1.

dimSr(Σ)d =

(
d+ 2

2

)
+

∑
γ∈Σ1

(
(nγ − rγ)

(
d+ 2− qγ

2

)
− rγ

(
d+ 1− qγ

2

))
− dimKr

d .

Using Corollary 0.2, there is a different formulation of this theorem for a fan ΣA induced by a
hyperplane arrangement.

Theorem 2.2. Let A be a central hyperplane arrangement and Σ = ΣA its induced fan. Suppose
that r : Σ2 → Z≥−1 is constant along hyperplanes of A (so we may regard r also as a function
r : A → Z≥−1). Then

dimSr(Σ) =

(
d+ 2

2

)
−

∑
τ∈Σ2

(
d+ 1− r(τ)

2

)
+

∑
γ∈Σ1

(
(nγ − rγ)

(
d+ 2− qγ

2

)
− rγ

(
d+ 1− qγ

2

))

+
∑
H∈A

(
d+ 1− r(H)

2

)
− dim

 ∑
W∈L2(A)

syz(Mr
W )


3. Generic Hyperplane arrangements

A hyperplane arrangement A = ∪k
i=1Hi ⊂ R3 is called generic if no three distinct hyperplanes

Hi, Hj , Hk ∈ A intersect along a common line. In this case we have the following explicit formulas.
If γ ∈ ΣA

1 , then there are exactly four two-dimensional cones of ΣA that contain γ, and these
four span only two distinct planes H,H ′ ∈ A by the assumption that A is generic. So J(γ) =

⟨αr(H)+1
H , α

r(H′)+1
H′ ⟩ is a complete intersection.

Moreover syzMr
W is quite simple: each W ∈ L2(A) is the intersection of exactly two hyperplanes

H,H ′ ∈ A. Thus syzMr
W consists of the Koszul syzygy between α

r(H)+1
H and α

r(H′)+1
H′ . It follows

that
∑

W∈L2
syzMr

W is the image of the Koszul syzygies inside the free module
⊕

H∈AR(−r(H)−1).
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Let us write K2(A, r) for the |A| ×
(|A|

2

)
matrix whose columns are the Koszul syzygies between all

pairs α
r(H)+1
H , α

r(H′)+1
H′ . That is, let N =

⊕
H∈AR(−r(τ)− 1). Then K2(A, r) represents the map

∧2N
K2(A,r)−−−−−→ N.

We have the following proposition.

Proposition 3.1. If A ⊂ R3 is a generic hyperplane arrangement and Σ = ΣA the induced fan,
then

dimSr(ΣA)d =

(
d+ 2

2

)
+

∑
τ∈Σ2

(
d+ 1− r(τ)

2

)

−
∑
γ∈Σ1

γ⊂H∩H′

[(
d+ 1− r(H)

2

)
+

(
d+ 1− r(H ′)

2

)
−

(
d− r(H)− r(H ′)

2

)]

+
∑
H∈A

(
d+ 1− r(H)

2

)
− dim(imK2(A, r))d

This reduces finding dimSr(ΣA) to finding the Hilbert function of the image of the Koszul matrix
K2(A, r).

Example 3.2. Suppose A = ∪4
i=1Hi is a generic three-dimensional arrangement and r(Hi) = 0 for

1 ≤ i ≤ 4. Let αi = αHi for 1 ≤ i ≤ 4. Then

K2(A, r) =

12 13 14 23 24 34


H1 α2 α3 α4 0 0 0
H2 −α1 0 0 α3 α4 0
H3 0 −α1 0 −α2 0 α4

H4 0 0 −α1 0 −α2 −α3

.
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