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The following lemma is a useful presentation for H;(J*[X]) when ¥ is complete. This is the
analogue of [5, Lemma 3.8] for complete fans.

Lemma 0.1 ([1, Lemma 9.12]). Let ¥ C R? be a hereditary, complete fan. Define K" C @ R(—r(1)—
TEYXD
1) by
K" = {Z frezlv € 217Zf704:-(7)+1 = 0}.

T
Also define V" C @ R(—r(1)—1) by

TED
VI={>" frer| Y fraXDH =0}

TEY
Then K* C V' and Hi(J"[X]) = V*/K" as R-modules.
Proof. The proof is similar to the proof of [5, Lemma 3.8]. Let K3 C P

module of relations around the ray v € X1, namely

Ks = {Z frerl foa:—(ﬂ = 0}.

Ty

ver B(—1(7))e- be the

Furthermore, let J(0) be the ideal of the central vertex of ¥. Set up the following diagram with
exact rows, whose first row is the complex J[X].

D R(-r(r)) — @ R(-r(r) — @ R(-x(7))

TEY YEX1,TEDS TEY Y

YET

0 @ K : yr
yEX1
0 0
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The middle row is in fact exact because the inclusion on the left hand side has the effect of gluing
together copies of R(—r(7)) that correspond to different rays in X1, leaving a copy of R(—r(7)) for
every codimension one face 7 € ¥ in the cokernel. Now the long exact sequence in homology yields
the isomorphisms Hy(J"[X]) & ker(¢) and H;y(J"[X]) = coker(). The image of P K under ¢ is

YEX]
precisely KT, so we are done. [l

Now suppose A= UZ 1 Hi C R3 is a hyperplane arrangement with associated complete fan
YA, Letr: 22 — Z>_1 be a smoothness distribution that is constant on hyperplanes (that is, if
7,7 C H € A, then r(7) = r(7’)). In this case, we also regard r as a map from A — Z>_;. Let

M* = [al(Hl) o 0‘2( )} be the matrix whose entries are the linear forms defining the hyperplanes
of A, raised to the power stipulated by r. Let

syz(M*) {Zfzez Zf, o}c@R

be the syzygy module of the matrix MT.
For a given line W appearing as the intersection of at least two hyperplanes of A, we write My,

for the matrix with a single row whose entries are {agH) : W C H}. We similarly have

syz(M,) : {Z faen: Y froitH _0} c & R —1).

HDOW HDOW HDOW

There is a natural inclusion from syz(Mj,) into syz(M™) by extending the syzygy on My, by zero
to the rest of the entries of syz(M™).

Corollary 0.2. If A = Ule H; C R? is a hyperplane arrangement with associated complete fan
YA andr: Eé“ — Z>0 15 a smoothness distribution, then

syz(M”)
ZWGLQ(.A) syz(Myy,)’

where La(A) is the collection of lines appearing as intersections of hyperplanes of A.

Hi(J[24]) =

1. THREE-GENERATED HYPERPLANE ARRANGEMENTS

The case r = 0 of Corollary 0.2 deserves special attention.

Corollary 1.1. If A = Ule H; C R3 is a central and essential hyperplane arrangement with
associated complete fan A and r = 0, then Hy(J[XA]) is isomorphic to the R-vector space of R-
linear relations among the linear forms aq, ..., a; modulo the R-linear relations among asq, ...,k
of length three.

Proof. In this case, r(1) = 1 for all 7 € 4", so M* = [al e ak]. Suppose a1, ag, a3 are a basis for
the R-span of the entries of M™* (this is three dimensional since A is essential).

Then syz(M?™) is generated by the Koszul syzygies on {ag, as, a3} along with all the R-linear
relations on the entries of MT.

If 4 € Ly(A), then we can select two linear forms, without loss suppose these are a; and g, that
intersect in the line 4. The syzygy module syz(M§ ) is generated by the Koszul syzygy between oy
and ap, along with the R-linear relations on {ap},em. Since these linear forms effectively live in
the two-dimensional vector space spanned by a7 and as, the relations among them all have length
three.
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From the above descriptions, we see that the Koszul syzygies in syz(M?) appear alsoin > syz(M3).
yEL2(A)
Thus the presentation in Corollary 0.2 implies that
syzo(M¥)

A ~
Hl(j[z ]) - Z:YGLQ(A) SyZO(M,%,‘)’

where syz, represents ‘syzygies of degree zero’ — that is, R-linear relations.

Furthermore, any relation of length three among {a1, ..., ax}, without loss suppose ¢ +caca +
csas = 0, necessarily expresses the fact that ay, e, and ag all vanish along a common line 5 € Ly(A).
Thus this relation appears in syz(M};). It follows that we may recast the above presentation as the
space of all R-linear relations on ay, . . ., ax modulo the space of R-linear relations of length three. [J

Definition 1.2. If A = Ule H; is a hyperplane arrangement with H; the vanishing locus of «a; for
i =1,...,k, then A is called 3-generated if the space of all R-linear relations among «aq, ..., ag is
generated by the relations of length 3.

Lemma 1.3. If A= Ule H; C R? is a hyperplane arrangement with associated complete fan Y4,
and r : X4\ — Z>q is a smoothness distribution, then Hy(J[SA]) has finite length. Furthermore
ST(SA) is free if and only if Hi(J[S4]) = 0.

Sketch of proof. Show that the localization of the presentation in Corollary 0.2 at all homogeneous
prime ideals besides the maximal ideal vanishes. The latter fact (concerning freeness) follows from
a seminal result of Schenck [3], generalized in [4, Theorem 3.4]. In the three-dimensional case, this
can be argued fairly quickly using Ext. O

Corollary 1.4. S9(24) is free if and only if A is 3-generated.

The subtlety of this can be seen in action with an example that is sometimes called Ziegler’s pair.
There will be a Macaulay demo walking through this example.

2. UNWINDING THE DIMENSION OF SPLINES ON COMPLETE THREE-DIMENSIONAL FANS

We regard r and ¥ as understood in this section, and so we write J instead of J*[X]. If ¥ is a
complete three-dimensional fan, Lemma 0.1 can be used to give an interesting dimension formula
for S*(X). Using the Euler characteristic of J and the fact that Ho(J) = 0 we get

dim Hy(J)g — dim Hy(J)g = Y _ dim J(r)g— Y J(y)a+ dim J(0)4
TEX yEXL
Now recall that S*(X) = R @& Hy(J). This gives
dim S*(5)g = dim Ry + »_ dim J(r)q — »  dimJ(y)q + dim J(0)q + dim Hy(J)g. (2.1)
TEY2 Y€1
Since R = Rz,y,z], dim Ry = (szrQ). Since J(1) = (a5(7)+1>, dim J(7)q = (d+2_(g(7)+1)) =
(dﬂgr(ﬂ). The dimension of J(7)4 is computed by Schenck and Geramita in [2]. Their result

is the following. J(y) = <a£(7)+1 : T > 7) is a codimension two Cohen-Macaulay ideal, and
thus it has a Hilbert-Burch resolution. Suppose that there are n, + 1 codimension one cones
containing v and that 79,...,7,, € X2 are these codimension one cones. Then J(v) is generated

in degrees eg = r(10) + 1, ,en, = r(7n,) + 1. Put B, = Y17 e;. The key technical result of

2], which is Theorem 2.7 of that paper, is that syz.J(y) is generated in degrees dj,...,d,, where

di < dy < --- < dy, are each as close as possible to I, /n,. To state this exactly, let £, = ¢,n, +7,
3



be the result of dividing E, by n, using the Euclidean algorithm. Thendy = dy = ... = dy,—r, = ¢
and dp,—r +1 =+ =dn, = gy + 1. Thus

dim I = <d+ 12— r(r)) iy r7)<d+22_ Q’y) . <d+ 12— q7>.

(=l
In Equation (2.1), this leaves the term dim J(0)g + dim H;(J)q unsimplified. We simplify it as
follows. Consider the (generally non-minimal) exact sequence

(X:(T)+11T622]

0 — syz[aEDH 7 e 5y) — @ R(—r(1) —1)
TEY:

J(0) — 0.

In the notation of Lemma 0.1, syz[oz:(T)Jrl : 7 € Y| = VT, Thus we have dim J(0) = > v, (dﬂgr(ﬂ) -

dim V. By Lemma 0.1, we have dim H;(J)q = dim V] — dim K. Thus

d+1—
dim J(0)g + dim H1(J)a =( Z ( + 5 r(7)> —dim V) + (dim V; — dim K}))
TEYX?
d+1—
= Z < * 5 r(7)> —dim K.
TEY?
Using these expressions to simplify (2.1) and using the fact that > > (dH;r(T)) =2 > (dHEr(T))

TEZQ (=l TEEQ
(each codimension one cone 7 contains two rays) we get the following.

Theorem 2.1.

dim 57 (%) = <d‘;2) +Y ((nV —r7)<d+22_ q7> . <d+ 12_ q”)) — dim K.

vETL

Using Corollary 0.2, there is a different formulation of this theorem for a fan ¥4 induced by a
hyperplane arrangement.

Theorem 2.2. Let A be a central hyperplane arrangement and ¥ = X4 its induced fan. Suppose
that v : X9 — Z>_1 is constant along hyperplanes of A (so we may regard r also as a function
r: A—Z>_1). Then

(1) 3 (7 3 (e () ()

YEX]

s <d+ 1 ; r(H)> Cdm Y syt

HeA WeLa(A)

3. GENERIC HYPERPLANE ARRANGEMENTS

A hyperplane arrangement A = Uf;lHi C R3 is called generic if no three distinct hyperplanes
H;, H;, Hy, € A intersect along a common line. In this case we have the following explicit formulas.

If v € Z{l, then there are exactly four two-dimensional cones of ¥4 that contain 7, and these
four span only two distinct planes H, H' € A by the assumption that A is generic. So J(v) =

H)+1 _r(H)+1, . . .
<042({ o+ ,ag, )+ ) is a complete intersection.

Moreover syzMj;, is quite simple: each W € Lo(.A) is the intersection of exactly two hyperplanes

H,H' € A. Thus syzMj;, consists of the Koszul syzygy between al;{(H)H and Oz;},HI)H. It follows

that » e p, syzMy, is the image of the Koszul syzygies inside the free module ;¢ 4 R(—r(H)—1).
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Let us write Ks(A,r) for the |A| x (‘él) matrix whose columns are the Koszul syzygies between all

pairs agH)H, ag,Hl)Jrl. That is, let N = @y 4 R(—r(7) —1). Then K3(A,r) represents the map
n2N 24D,

We have the following proposition.

Proposition 3.1. If A C R3 is a generic hyperplane arrangement and ¥ = X4 the induced fan,

hen
t S, <d 42_ 2) N T§2 <d + 12— r(7)>
B %:1 Kd +1 - r(H)> N <d +1 - r(H’)> B <d - r(H)2— r(H’))]
~CHNH'
+ }% <d 1 ) r(H)> _ dim(imKa(A, 1))

This reduces finding dim S*(X4) to finding the Hilbert function of the image of the Koszul matrix
K2 (-’4¢ I‘) .

Example 3.2. Suppose A = U}_| H; is a generic three-dimensional arrangement and r(H;) = 0 for
1<i<4. Let o = g, for 1 <7 < 4. Then

12 13 14 23 24 34
Hy [ a a3 oy 0 0 0
Hy |-« 0 0 o' le' 0

Ko(A,r) = 12 1 3 4
2( I') H3 0 —Q1 0 — Q9 0 Y
Hy 0 0 —0q 0 —Q —Qa3
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